The DLO4135/DLG4137
 5×7 Dot Matrix Intelligent Display ${ }^{\circledR}$ Appnote 28

This application note is intended to serve as a design and application guide for users of the DLO4135 and DLG4137 OSRAM Intelligent Displays. This appnote covers device electrical description, operation, general circuit design considerations, and interfacing to microprocessors.

Electrical Description

The DLO4135/DLG4137 Intelligent Alphanumeric 5x7 Dot Matrix Display contains memory, character generator, multiplexing circuits, and drivers built into a single package.
Figure 1 is a block diagram of DLO4135/DLG4137. The unit consists of 35 LED die arranged in a 5×7 pattern and a single CMOS integrated circuit chip. The IC chip contains the column drivers, row drivers, 128 character generator ROM, memory, multiplex and blanking circuitry.

Figure 1. DLO4135/DLG4137 block diagram

Thirty-five dots form a 0.30×0.43 inch overall character size in a. 500×1.00 inch dual-in-line package. The ± 50 degree wide viewing angle complements the display and is the ideal display
for industrial control applications. Display construction is filled reflector type with the integrated circuit in the back also filled with IC-grade epoxy. This results in a very rugged part which is resistant to moisture, shock and vibration.

Figure 2. Physical dimensions in inches (mm)

Table 1. DLO4135/DLG4137 pin functions

Pin	Function	Pin	Function
1	$\overline{\text { LT Lamp Test }}$	9	D0 data LSB
2	$\overline{\text { WR }}$ Write	10	D1 data
3	$\overline{\text { BL1 }}$ Brightness	11	D2 data
4	$\overline{\text { BL0 Brightness }}$	12	D3 data
5	No Pin	13	D4 data
6	No Pin	14	D5 data
7	$\overline{\text { CE Chip Enable }}$	15	D6 data MSB
8	GND	16	+V CC

[^0]Table 2. Pin description

$V_{\text {CC }}$	Positive Supply +5 volts
GND	Ground
D0-D6	Data Lines, see Figure 3 (Character set)
$\overline{\mathrm{CE}}$	Chip Enable (active low) This determines which device in an array will accept data
$\overline{\mathrm{WR}}$	Write (active low) Data and chip enable must be present and stable before and after the write pulse (see data sheet for timing)
$\overline{\mathrm{BLO}, \overline{\mathrm{BL1}}}$	Blanking Control Input (active low) Used to control the level of display brightness
$\overline{\mathrm{LT}}$	Lamp Test (active low) Causes all dots to light at $1 / 2$ brightness

Operation

In a dot matrix display system, it is advantageous to use a multiplexed approach with 12 drivers (5 digit plus 7 segments) rather than 35 segment drivers. This obviously reduces the number of drivers and interconnections required. A multiplexed system must be a synchronous system, or the digits or elements may have different on (lit) times and therefore varying brightness.

The DLO4135/DLG4137 is an internally multiplexed display, but the data entry is asynchronous. Loading data is similar to writing into a RAM. Present the data, select the chip, and give a write signal. For a multi digit system, each digit has its own unique address location and will display its contents until replaced by another code. The waveforms of Figure 4 shows the relationship of the signals required to generate a write cycle. Check the data sheet for minimum values required for each signal.

Figure 3. Character set

1. High=1 level. 2. Low=0 level.

Figure 4. Timing characteristics

Display Blanking and Dimming

The DLO4135/DLG4137 Intelligent Display has the capability of three levels of brightness plus blank. Figure 5 shows the combination of $\overline{\mathrm{BLO}}$ and $\overline{\mathrm{BL} 1}$ for the different levels of brightness. The $\overline{B L O}$ and $\overline{B L 1}$ inputs are independent of write and chip enable and does not affect the contents of the internal memory. A flashing display can be achieved by pulsing the blanking pins at a 1-2 hertz rate. Either $\overline{B L O}$ or $\overline{B L 1}$ should be held high to light up the display.

Table 3. Dimming and blanking control

Brightness Level	$\overline{\text { BL1 }}$	$\overline{\text { BL0 }}$
Blank	0	0
$1 / 7$ brightness	0	1
$1 / 2$ brightness	1	0
full brightness	1	1

Lamp Test

The lamp test when activated causes all dots on the display to be illuminated at $1 / 7$ brightness. It does not destroy any previously stored characters. The lamp test function is independent of chip enable, write, and the settings of the blanking inputs.
This convenient test gives a visual indication that all dots are functioning properly. The lamp test can be used as a cursor or pointer in a line of displays because it does not affect the display memory.

General Design Considerations

When using the DLO4135/DLG4137 on a separate display board having more than 6 inches of cable length, it may be necessary to buffer all of the input lines. A non-inverting 74LS244 buffer can be used. The object is to prevent current transient into the DLO4135/DLG4137 protection diodes. The buffers should be located on the display board and as close to the displays as possible.
Because of high switching currents caused by the multiplexing, local power supply by-pass-capacitors are also needed in many cases. These should be 10 volt, tantalum type having 10 uf capacitance. The capacitors may only be required every 2 displays depending on the line regulation and other noise generators.
Decoupling capacitors should also be used across V_{CC} and ground of each display. Typical value of these capacitors is $0.01 \mathrm{mF} / 10 \mathrm{~V}$.

If small wire cables are used, good engineering practice is to calculate the wire resistance of the ground and the +5 volt wires. More than 0.2 volt drop (at 100 ma per digit) should be avoided, since this loss is in addition to any inaccuracies or load regulation of the power supply.
The 5 volt power supply for the DLO4135/DLG4137 should be the same one supplying the V_{CC} to all logic devices. If a separate power supply must be used, then local buffers should be used on all the inputs. These buffers should be powered from the display power supply. This precaution is to avoid line transients or any logic signals to be higher than V_{CC} during power up.

Figure 5. Block diagram of the Intel 8031 controller

Interfacing

For an eight digit display using the DLO4135/DLG4137, interfacing to a single chip microprocessor such as the 8748 , is easy and straight forward. One approach may be to dedicate one port for the seven data signals and another 8-bit port for the write signals. The schematic is shown in Figure 6.

I/O or Memory Mapped System

For a memory mapped system using a processor such as the 8080 or 8085 , the interfacing is also straight-forward. Each display is treated as a memory location with its own address, like another I/O or RAM location. See Figure 7.

Figure 6. DLO4135/DLG4137 with 8748

Subroutine to Load an 8-digit Display using the DLO4135/ DLG4137

INIT			DATA IN RAM 10H-17H (MSD-LSD)
	ORL	P1,\#OFFH	PORT 1 ALL HIGH (WRITE)
	ORL	P2,\#00H	PORT 2 ALL LOW (DATA)
	MOV	R1,\#OFH	RAM ADDRESS—1
	MOV	R2,\#0FEH	WRITE PULSE
	MOV	R3,\#08H	COUNTER
START:	INC	R1	; INCREMENT RAM POINTER
DATA:	MOV	A,@R1	FETCH DATA FROM RAM
	OUTL	P2, A	LOAD PORT 2
	MOV	A, R2	RECALL WRITE
	RR	A	SHIFT A TO NEXT WRITE
	MOV	R2,A	SAVE WRITE
WRITE:	OUTL	P1,A	SEND WRITE PULSE
	MOV	A,\#OFFH	WAIT
	OUTL	P1,A	RESET WRITE PULSE
	DJNZ	R3,START	LOAD COMPLETE?
	RET		RETURN TO MAIN PROGRAM

Figure 7. Block diagram for 8-digit DLO4135/DLG4137

Routine for an 8-Digit Display using the DLO4135/DLG4137 and $\mathbf{8 0 8 5}$ or $\mathbf{8 0 8 0}$ Microprocessor
; DATA TO BE DISPLAYED IS IN
; A0 (LSD) THRU A7 (MSD)
; DISPLAY ADDRESS COOX
; LSD IS RIGHT MOST DIGIT
DOES NOT SAVE REG A,B,H,L,D,E

DADD	EQU	OAOOOH	DATA ADDRESS LOCATION
DPAD	EQU	OCOOOH	DISPLAY ADDRESS
			LOCATION
LEN	EQU	08H	DISPLAY LENGTH
ORG	100 H		
DISP:	LXI	H,DADD	LOAD DATA ADDRESS
	LXI	D,DPAD	; LOAD DISPLAY ADDRESS
	MVI	B,LEN	LOAD DISPLAY LENGTH
DISP1:	MOV	A, M	GET DATA
	XCHG		; XCHG H/L \& D/E
	MOV	M, A	LOAD DISPLAY FROM REG A
	XCHG		RESTORE H/L \& D/E
	INX	D	; INCREMENT DISPLAY ADDRESS
	INX	H	; INCREMENT DATA ADDRESS
	DCR	B	DECREMENT LENGTH COUNTER
	JNZ	DISP1	END OF DISPLAY?
	RET		TURN TO MAIN PROGRAM

Conclusion

Note that although other manufacturers' products are used in the examples, this application note does not imply specific endorsement, or warranty of other manufacturer's products by OSRAM. The interface schemes shown demonstrate the simplicity of using the DLO4135/DLG4137 dot matrix Intelligent Dis-
play. Slight timing differences may be encountered for various microprocessors, but can be resolved using similar methods as those used when using interfacing microprocessors with various RAMs. The techniques used in the examples were shown for their generality. The user will undoubtedly invent other schemes to optimize his particular system to its requirements.

Program Listing

[^0]: © 2000 Infineon Technologies Corp. • Optoelectronics Division • San Jose, CA www.infineon.com/opto • 1-888-Infineon (1-888-463-4636)
 OSRAM Opto Semiconductors GmbH \& Co. OHG • Regensburg, Germany www.osram-os.com • +49-941-202-7178

